中国石油工程建设协会

北京华思维信息技术有限公司

BEIJING HSOFT TECHNOLOGIES INC.

http://www.hsw.com.cn/

目录

- 01 研究背景
- 02 软件功能
- 03 技术路线
- 04 工程案例

記言达

开敞钢结构特点

- 风直接作用在构件
- 设备、结构构件、梯子、栏杆风荷载导算

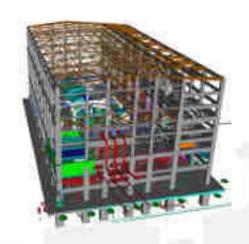
■ 无维护结构

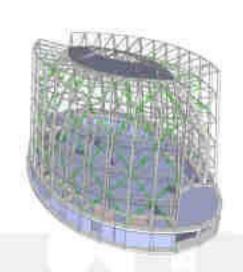
- 设备模拟
- 设备刚度的影响
- 设备与结构的连接

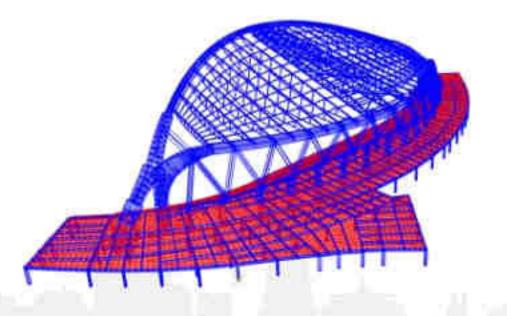
设备多

- 刚度有限,不符合平面内无限刚假定
- 柱失稳模式判别
- 地震内力调整方法

战 楼板弱



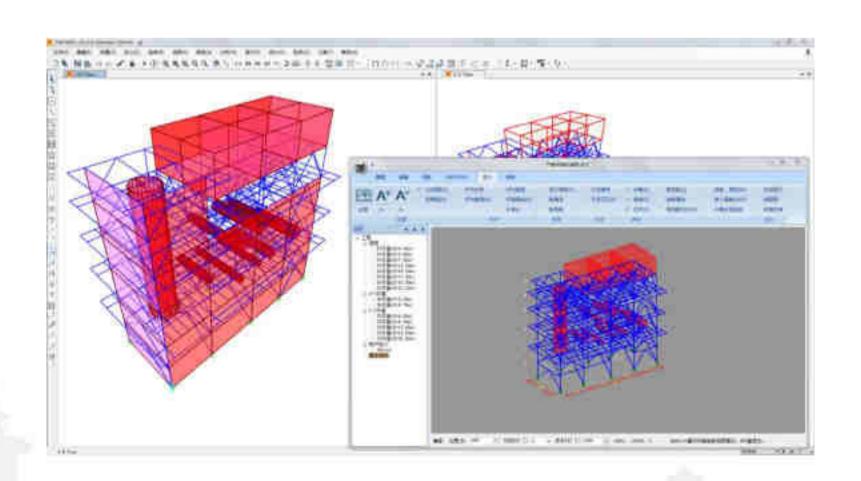

SAP2000有限元软件



JAP 2000 Structure Analysis Program

- 广泛应用于工业与民用建筑、公共建筑、道路、桥梁、水工、机械等各个 行业领域。
- 强大的分析功能
- 一体化的设计功能

SAP2000API 开放的应用程序接口


CiSOpenSteel

覆盖开敞结构设计全过程

- 建模、分析、设计

基于SAP2000设计软件

- 调用SAP2000分析与设计

話言法

编制依据

国标及行业规范

《石油化工钢结构冷模框架设计规范》

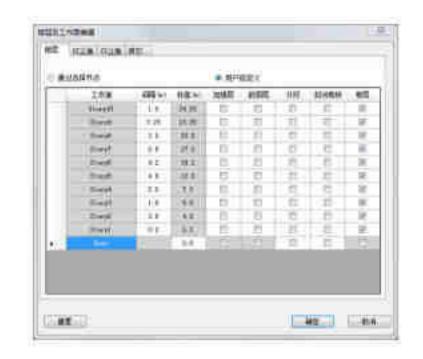
SHT 3077-2012

《石油化工建(构)筑物结构荷载规范》

GB 5100G-2014

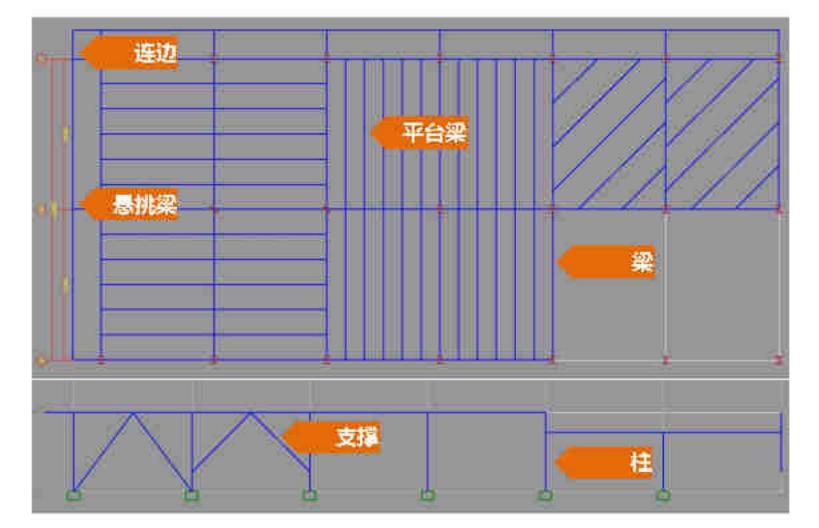
CiSOpenSteel功能

覆盖结构设计全过程



高效的建模工具

集中管理工程信息

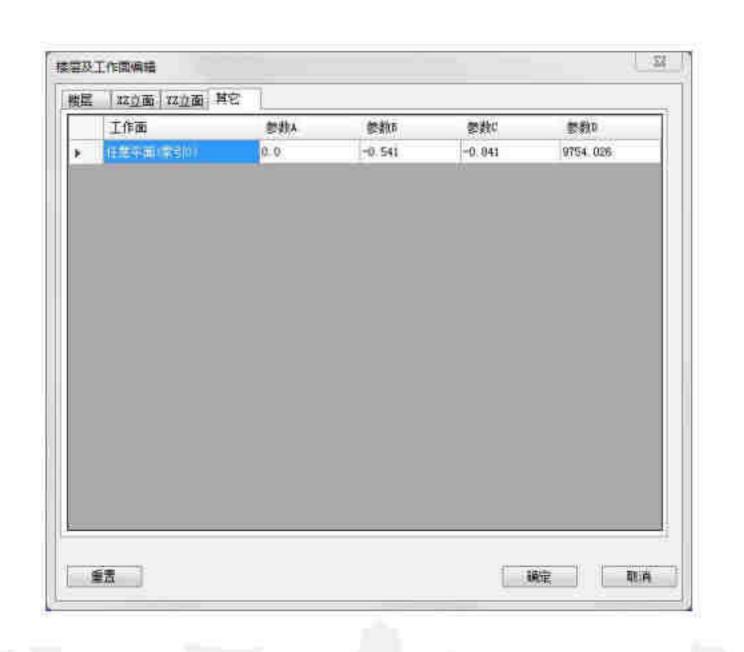

工程设置 工程参数统一输入调整

工作面设置 使用工作面的方式进行 模型的查看与编辑

快速建模工具

- 专用建模命令
- 附属构件建模
- 构件参数直接选择
- 多种布置方式
- 批量操作

精确定位


- 捕捉
- 坐标输入
- 参考点

自动处理

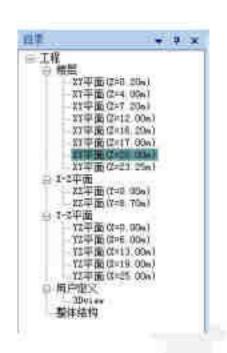
- 杆件类型
- 杆端约束

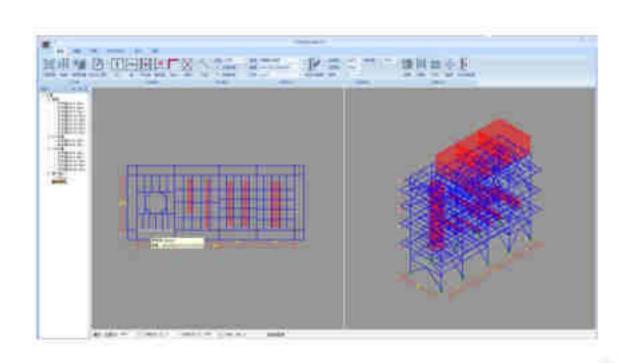
多种视图

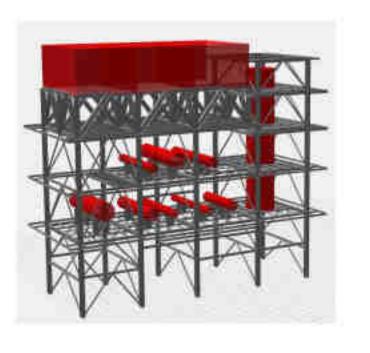
- 平、立、三维
- 自定义任意工作面

视图

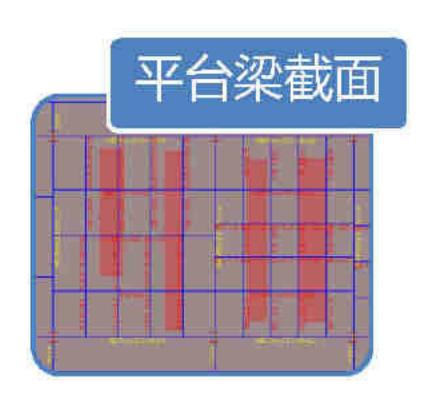
视图灵活切换


显示内容多样



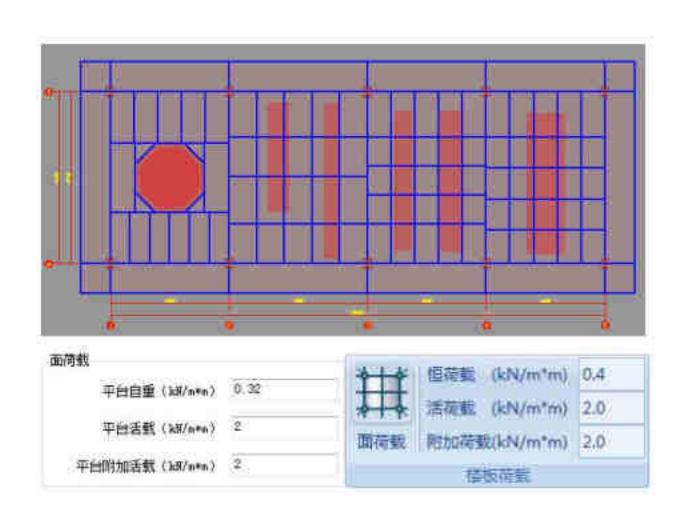

双视图

效果图显示



平台梁截面确定-一键选梁

杆件布置 杆件间的关系 杆件荷载 截面库备选截面 结构数据

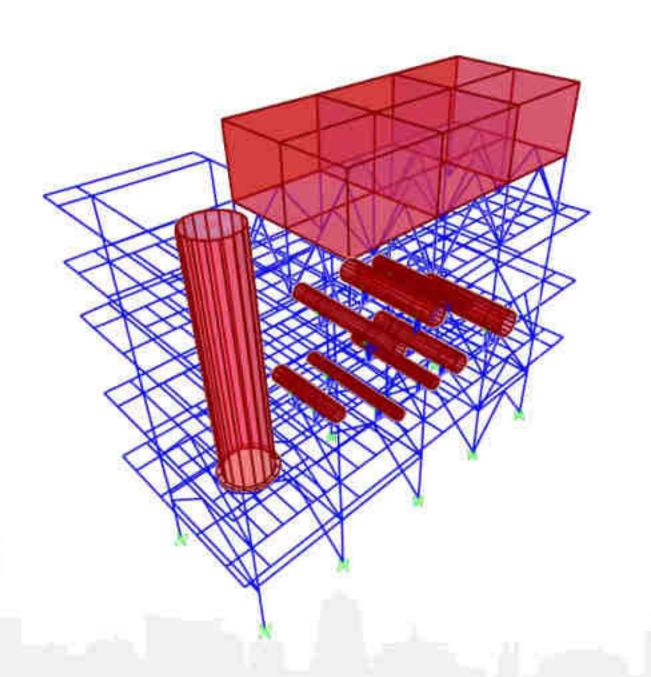


楼板的处理

- 一键生成
- 单向板导荷
- 可设置板有无
- 面荷载指定与修改

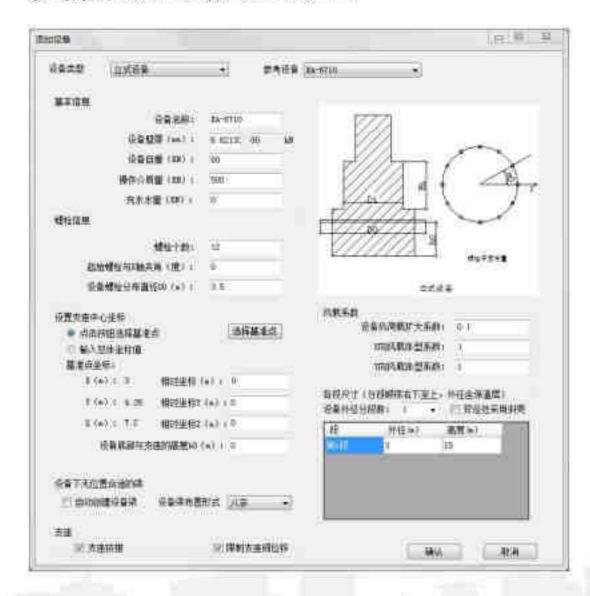
楼板多、刚度小

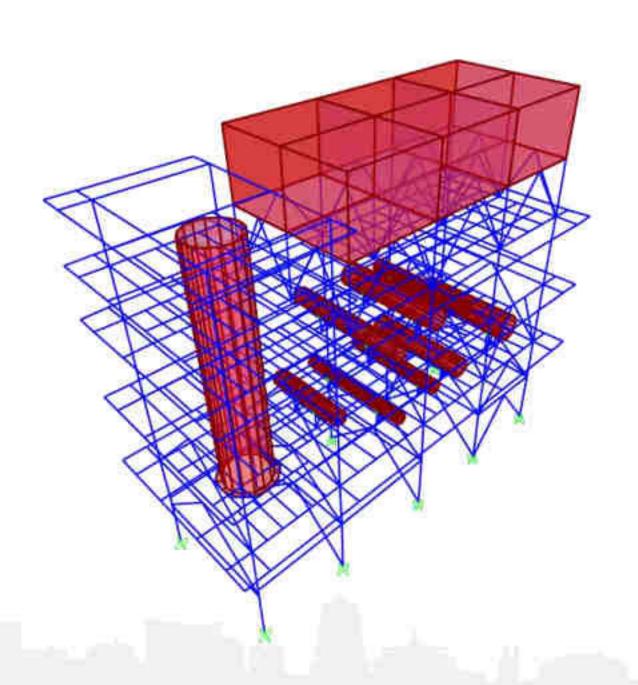
设备类型


- 立式设备、卧式设备、空冷设备

建模处理

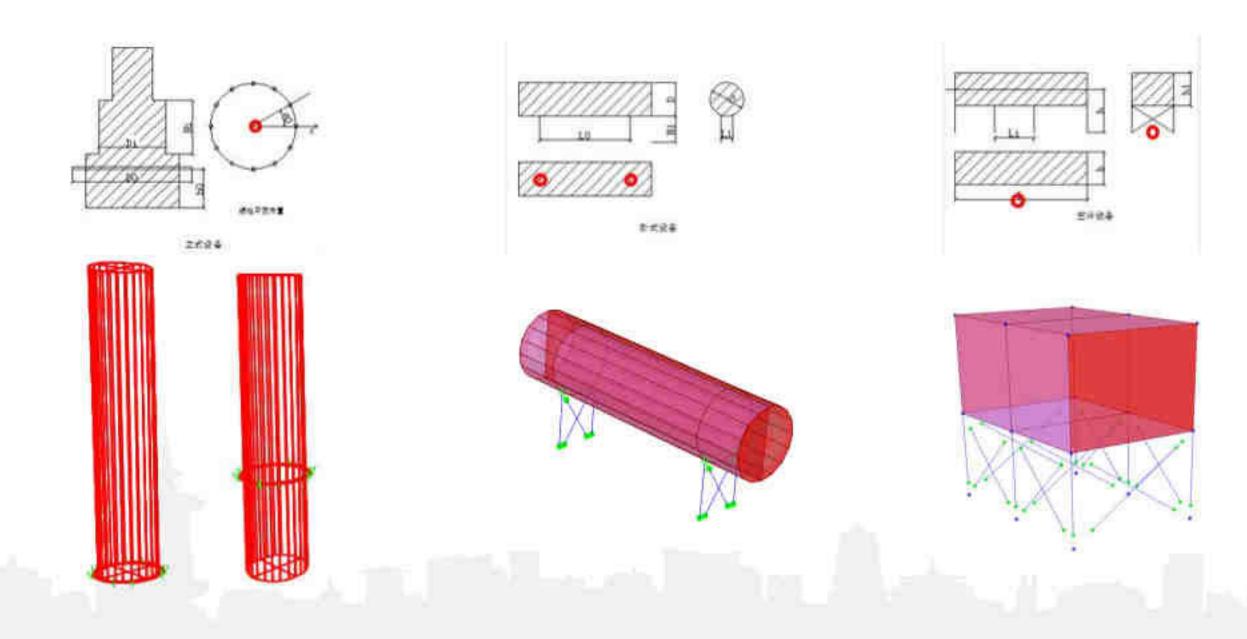
- 建立整体建模
- 荷载指定
- 设备与结构连接




📛 刚度、质量分布的模拟

软件操作

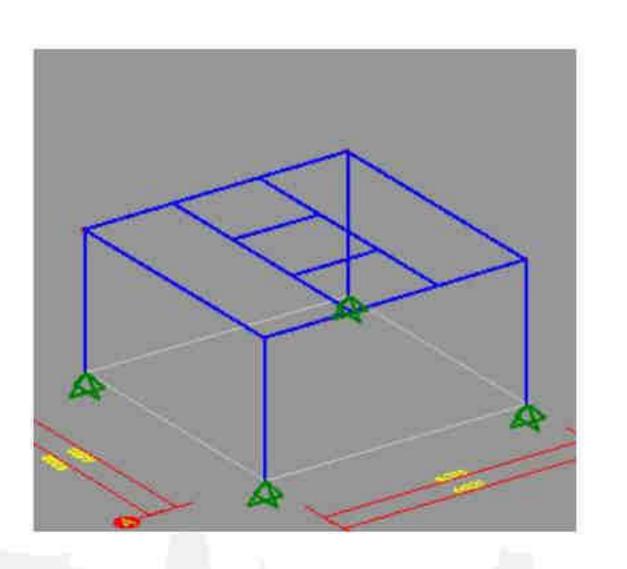
- 参数化方式建立模型



法言记

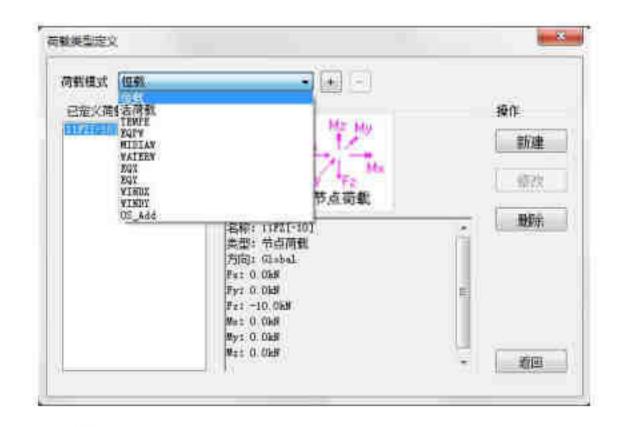
软件操作

- 参数化方式建立模型



記言达

自动创建设备梁


- 立式设备根据螺栓位置和选择的形式建立设备梁
- 卧式设备、空冷设备根据支座位置建立设备梁

自动荷载处理

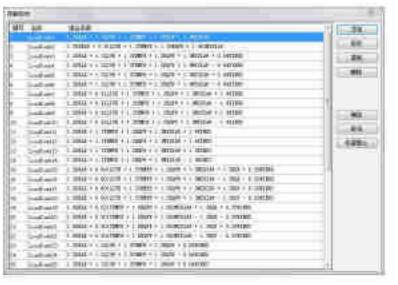
荷载预定义

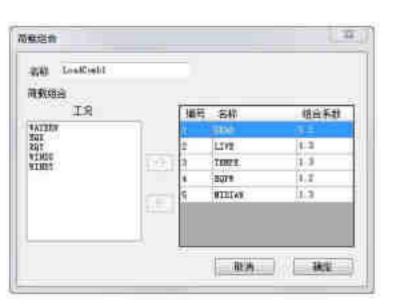
DEAD LIVE TEMPE **MIDIAW** WATERW **EQX EQY** WINDX WINDY user

荷载

自动荷载处理

荷载组合自动生成支持多种编辑方式


SHT 3077-2012 7.3.3


正常 操作 设备自重、结构自重、介质重、保温重、 平台均布活荷载、设备荷载、温度荷载、 风荷载

停产 检修 设备自重、结构自重、保温重、平台均布活荷载、风荷载

充水 试压 设备自重、结构自重、保温重、平台均布活荷载、试压时设备充水水重、风荷载

地震 作用 设备自重、结构自重、介质重、保温重、 平台均布活荷载、设备荷载、温度荷载、 地震作用

記言达

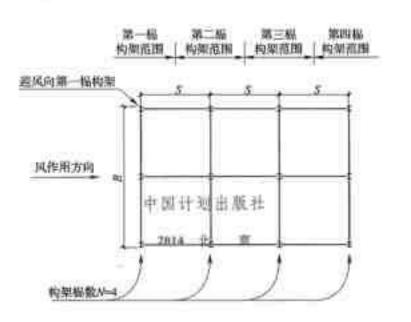
结构风荷载

开敞结构风荷载计算

框架上的风荷载应包括梁、柱、斜撑、栏杆和设备产生的风荷载。 计算风荷载时应考虑前后榀框架间、前后设备间的遮挡。(SH/T 3077-2011 6.4.1)

表 B. 0. 1-1 构架的整体体型系数 μ... (S/B=0.1)

+	$N\!=\!2$	N=1	SHI	N=5	$N\!=\!1$	N = 7	$\mathcal{N} = \emptyset$	N=0	N+10	N=11	N=13
0.10	2.52	3.41	4.14	4.00	1.44	6.01	6.10	6.59	7.30	7.12	8.04
0.15	2.38	3. 09	3, 63	1.22	4.66	5,04	5.30	5.74	6.01	8.23	8. 55
0. 20	2: 29	2.68	3, 33	3, 78	614	4, 43	4. 21	5, 04	5.28	5. 55	5, 77
0.35	\$11.	2.67	3.06	3,45	31.77	4, 56	6.32	4.38	4.31	5.01	5.23
0.30	1.95	22/14	2: 79	3.11	3. 30	3.63	3. 85	4, 09.	4.28	4.50	4.71
0.35	1.83	27.25	2.55	2.10	3.09	5, 30	3:48	3, 69	3. 86	4.00	4.29
0, 40	1.75	25.13	1,38	2.12	2.88	5. 65	2.21	3, 38	5.38	31.78	3, 98
0.30	1. 63	11.92	2.13	1.12	2.55	2.30	2.83	2. 97	3, 15	3, 55	3, 54


中华人民共和国国家标准

1 個化上徑(程)京初站构荷载机化

Load code for design of binliftings and special

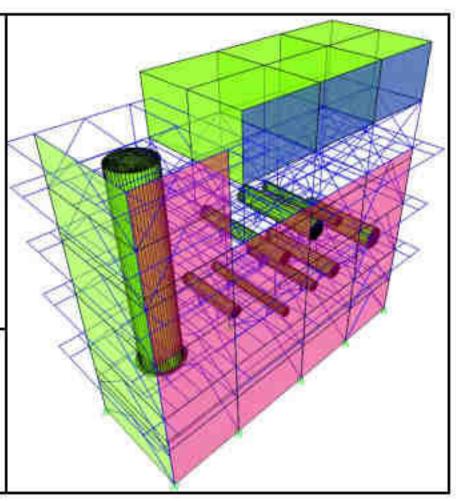
GB 51006-2014

主扇部门。中間石能化工業開公司 他商部门。中华人民共和国任务和城乡建设部 無行日期。2 0 1 5 年 4 月 1 日

語 情 i 太

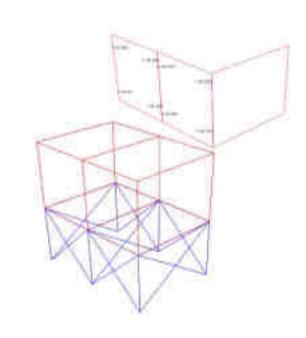
结构风荷载

迎风面风荷载体形系数

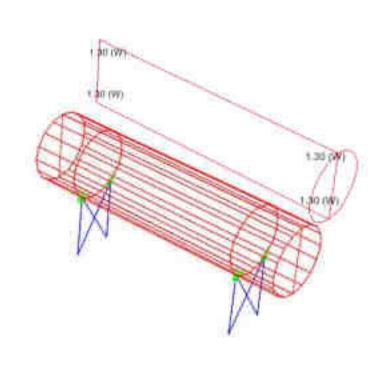

标高 (n)	柱	梁	平面内 支撑	顺风向 支揮	栏杆	据子	小計
4.000	5.040	2.123	1.837	0.000	0.000	0.000	7,000
5,000	0,800	0.000	1.717	0.000	0,000	0.000	2, 517
7.200	1.760	11.475	1,717	0,000	0.000	0.000	14.952
12,000	5,840	16, 531	2,060	0,000	0,000	0.000	22, 431
16.200	3,360	0.000	2, 108	0.000	0,000	0.000	5.468
17,000	0.640	13.038	2, 108	0.000	0.000	0.000	15,786
20.000	0.000	0.000	0.000	0.000	0.000	0.000	0,000
23.250	0,000	0.000	0,000	0.000	0.000	0,000	0.000
台计							68, 153

X方向总挡风面积:391.686m2

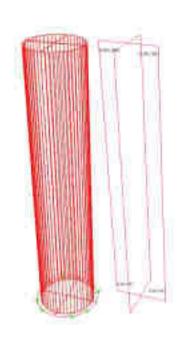
0.00m 处榀框架挡风面积最大:115.148m2


N = 5, S = 6.000n, B = 8.700n, S/B = 0.690

当构架的榀数、挡风系数、S/B 比值超过规范限值时,按照边界值查表计算 查《GB 51006-2014》附录 B 表 B.O.1 得到 X 方向构架整体体型系数 4 sw = 1.844


设备风荷载

设备风荷载


空冷设备

按方向确定迎风面,风 荷载体型系数指定到对 应的迎风面

卧式设备

设置虚面,风荷载体型 系数指定到对应的迎风 面

立式设备

设置虚面,风荷载体型 系数按方向指定到对应 虚面

设备风荷载

设备风荷载

- 7.4.5 计算设备风荷载时应考虑相邻设备的放大或遮挡影响。
- 2 当平台采用封闭楼板时,该层构架的结构风荷载宜乘以折减系数,折减系数宜按下式计算:

$$\eta_i = 1 - 0.2(A_i/A_s)$$
 (7.4.13)

风载系数 即向风载体型系数: 1.3 Y向风载体型系数: 0.7

工作面	间隔(n)	标高(4)	加强属	新面置	分段	封闭機板
Story?	3,25	23.25			B	
Staryti	3.0	20.0			10	10
Story5	0.8	17.0				


話言法

一位载

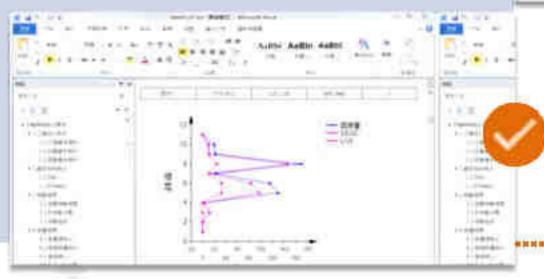
荷载指定

- 荷载集中定义批量指定
- 支持节点、杆件、面荷载布置
- 荷载图示显示荷载大小

話言法

设计参数指定

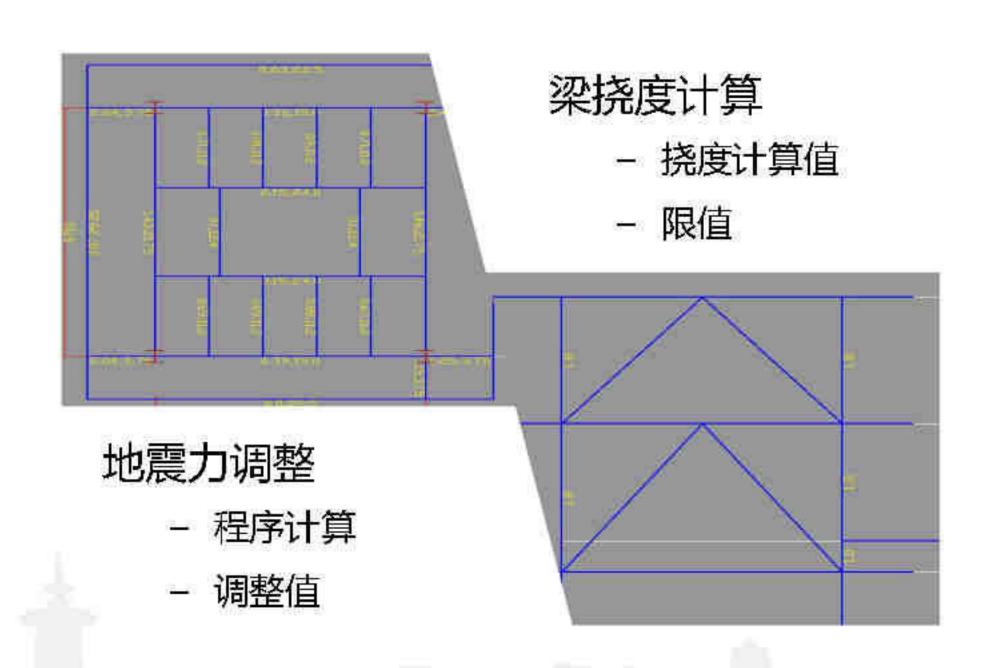
按类型指定杆件的设计参数


选 顺	節数值		
21 恒载限值 ata	Program Determined		
22 (耐加恒数+函数)隙值 ###	Program Determined		
23	Program Delemaned		
24 总规值 666	Program Determined		
25 多类度阻值 405	Program Determined		
注 推並長拱旗	Program Determined		
27 净/毛面积比	Program Determined		
20 活荷製拆填系数	Program Determined		
25 元友锋长度高载(主)	Program Determined		
10 无去樣长度系數(次)	Program Date mined		
11 有效长度系数 p(主)	0.0		
12 舞放长鷹系劃+(次)	1		
12 塑性質價系數((主)	Program Determined		
34 壁性发展系数 y(次)	Program Determined		
15 製造影病系数 0	Program Determined		
26. 缉牲系数 0	Pregram Chitermined		
37 要压长蜡比阻值16/r	120		
34 受拉长细比阴值中	180		
25 框服機度や	Program Dela mined		
40 抗戰强度设计值!	Program Determined		
41 抗胆學症役分債ル	Program Datemined		
42 寿虔假想期为?	Ho		
42 应力比準值	Program Determined		

结果输出

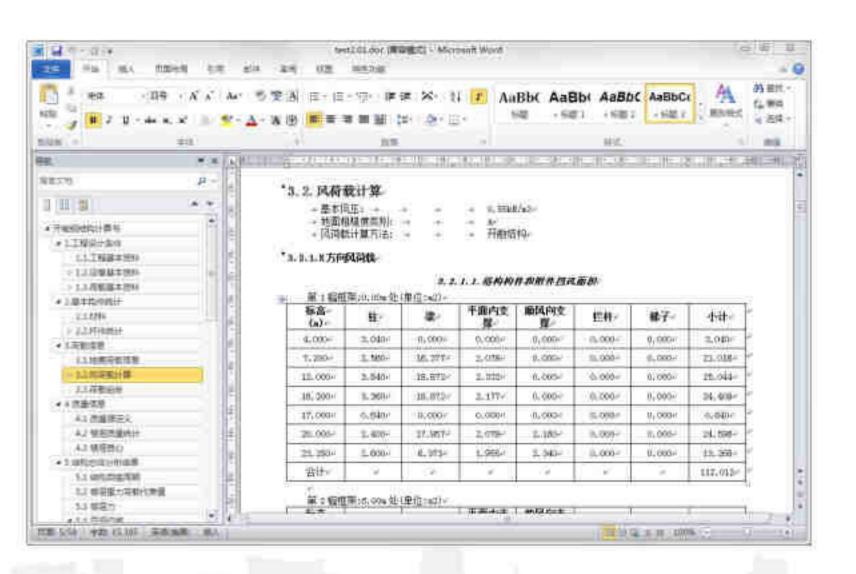
视图输出

- 梁挠度计算
- 地震力调整



文件输出

- 计算书输出
- 简图输出


视图输出

文件输出

Word计算书

文件输出

Word计算书

数据整理

▲ 1.工理设计条件	
1.1.工程基本资料	
1 1.2.设备基本资料	
1 13 荷妮基本资料	
▲ 2.基本杭件统计	
2.1.8584	
> 2.2.仟仲続け	
▲ 3.荷斯信息	
3.2.地震荷動信息	
2-3.2风荷敷計算	
3.3.荷型組合	
▶ 4 班最信息	
4.1 质量原定义	
4.2 模层质量统计	
4.3 標葉語の	

数据加工

à	5 结构总体分析结果
	5.1 结构自指岗脚
	5.2 模层型力荷载代表值
	5.3 模层力
	≠ 5.4 簡単位移
	5.4.1 地质工况信前位移
	5.4.2 风工况层间位修
	★ 5.5 柱顶位移
	5.5.1 地震工况柱顶位移
	5.5.2 风工况柱顶位修
	5.6 基底反力
	5.7 勢力調整
è	6 杆件分析(设计)结果
	▲ 6.1 在计算结算
	6.1.1 应力比
	6,1.2 控制円力
	★ 6.2 図計算地無
	6.2.1 应力比
	6.2.2 控制控力
	▲ 6.3 支撑计算结果
	6.3.1 应力比
	6.3.2 控制内力

补充计算

● 7 节点项	12年
7.1	节点 X1-Y1-h23.250
7.2	节点 X2-Y1-h23-250
7,3	节点 X1-V2-h23.250
7,4	节点 X2-Y2-h23.250
7,5	节点 X3-Y1-h12,000
7.6	节点 X3-Y1-h17,000
7.7	节点 X4-Y1-h17.000
7.8	节点 X3-Y2-h12,000
7.9	节走 X3-V2-h17,000
7.1	0 节点 X4-Y2-h17.000
▲ B 柱部设	it
8.1 12	多旗号地图
# 8.2 tž	斯提计过程
# 8.2	.1 柱支座SUPT-1
	1.柱里内力
	2.地部環接計算
	3.底板厚度的确定
	4.副原计算
	5.航梁焊链计算
	6.抗斯计算
	7.基础质型压力
	8.柱越极煤泽転力批算
5 8.3 to	斯材料表

文件输出

节点域验算

- GB50011 8.2.5

1. 桂底內力

选取是不利的一组内力

计算地能键控时,取在 Columni 的最不利的力组合 LCombDeflect: N = -570.84M, Mm = -20.43M*am, My = 0.90N*ma: 计算底板厚度时,取在 Columni 的最不利内力组合 LoadComb6:

(T 異時間写成的),秋性 COMMAN 的眼不利的//知音 Load.om

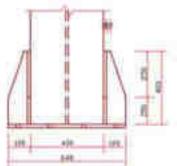
N = -798.87N, $Mx = -36.93N \cdot nn$, $My = 0.93N \cdot nn$:

2. 地胸螺栓计算

计算地据螺栓采用 Columni 柱 1.CombDeflect 组合 地据螺栓的材质为 Q205 铜,长方向螺栓数为 4,宽方向螺栓数为 4。螺栓总数为 12 柱底压力偏心系数 8 = 61 6×20,41 0.00 1≤1.3 地据螺栓按约需要求配置。取直径为 24ma

7.2 节点 X1-Y1-h7.200

下柱: Column1#3 (HW400x400x13x21) 上柱: Column1#4 (HW400x400x13x21) 坪 1: Beam9 (HN450x200x9x14) 禁 2: Beam335 (C16m)


验算《建筑抗强设计规范》(8860011-2010 (8.2.5-1) 萬载组合:LoadCoab18 植力 N = 442413.91 N 节点有支撑,不需要验算GB-58011-2010 (8.2.5-1)

验算《建筑抗震设计规范》GB50011-2010 (8, 2, 5-3)

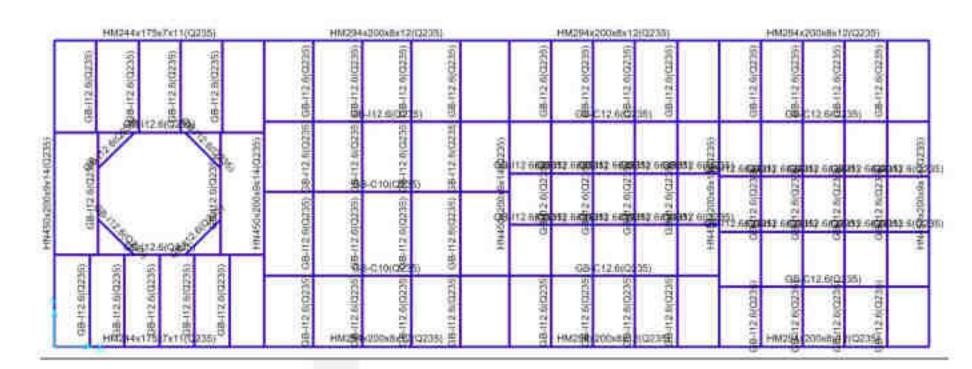
两侧梁不等高

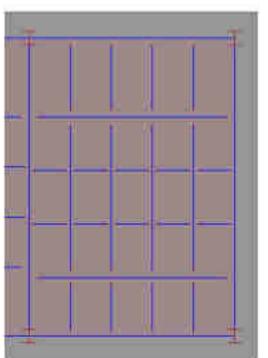
Φ (Mpb1/l/b1+Mph2/hb2)/hc/tw = 0, 70 (381049915, 00/436, 00+38621675, 00/150, 00)/355, 00/13, 00 = 162, 16

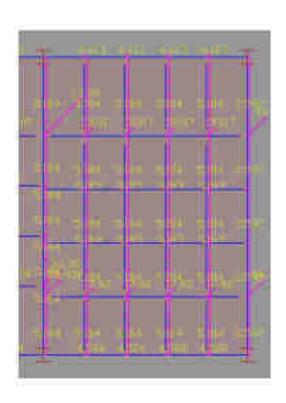
(4/3)Fyr= (4/3)130,50 = 174,00 萬足 GB-50011-2010 (8,2,5-3)

柱脚计算

- 柱脚详图
- 柱脚设计过程
- 柱脚材料表


平台梁选梁


计算方法


- 按照简支梁计算
- 导荷(杆件的主次关系)
- 杆件内力
- 选择截面(截面库)

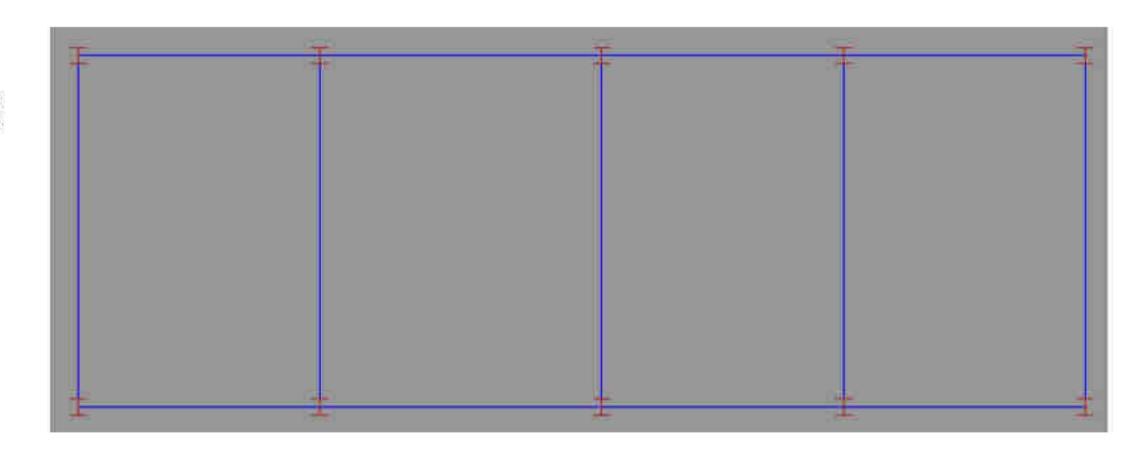
M	_	
\overline{W}	S	aj

$$y \le \gamma$$

深、次梁选載面参数	
应力折减系数	0.8
平台梁挨度控制值	0.004
	选梁截面库

楼板建模处理

楼板特点


- 数量多
- 刚度小

布置规则

- 判別可围成板区域
- 框架梁不生成

荷载布置

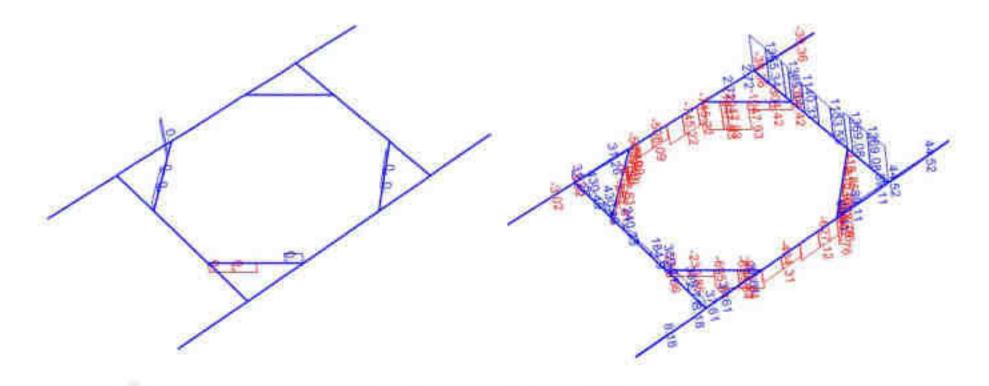
- 荷载直接指定
- 可修改
- 单向板导荷
- 导荷方向可调整

楼板建模处理

SAP2000有限元模型

- 单元模拟

- 加载方式 导荷到框架



None	None	None	Nune	None	None	None	None	None	None	None	None	None	None	None	None	None	None	None	None
	torus		Monne		None	None	None	None	None	None	None	None	None	None	None	None	None	None	None
None		None		None						None:	None	Norie .	None	None	None	None	None	None	Nome
	von	_	None	_	None	None	None	None	None	None	Norw	None	None	Norm	None	None	None	Non=	None
None	None N	one No	ne None	None:	None	None	Nome	None	None	None	None	None	None	None	None	Norm	None	None	None

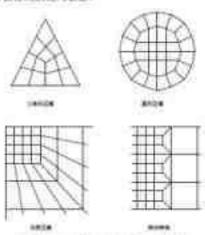
楼板处理对比

楼板刚性

楼板非刚性

设备梁轴力结果对比

设备模拟


- 设备-壳
- 支座-位置判断与连接单元

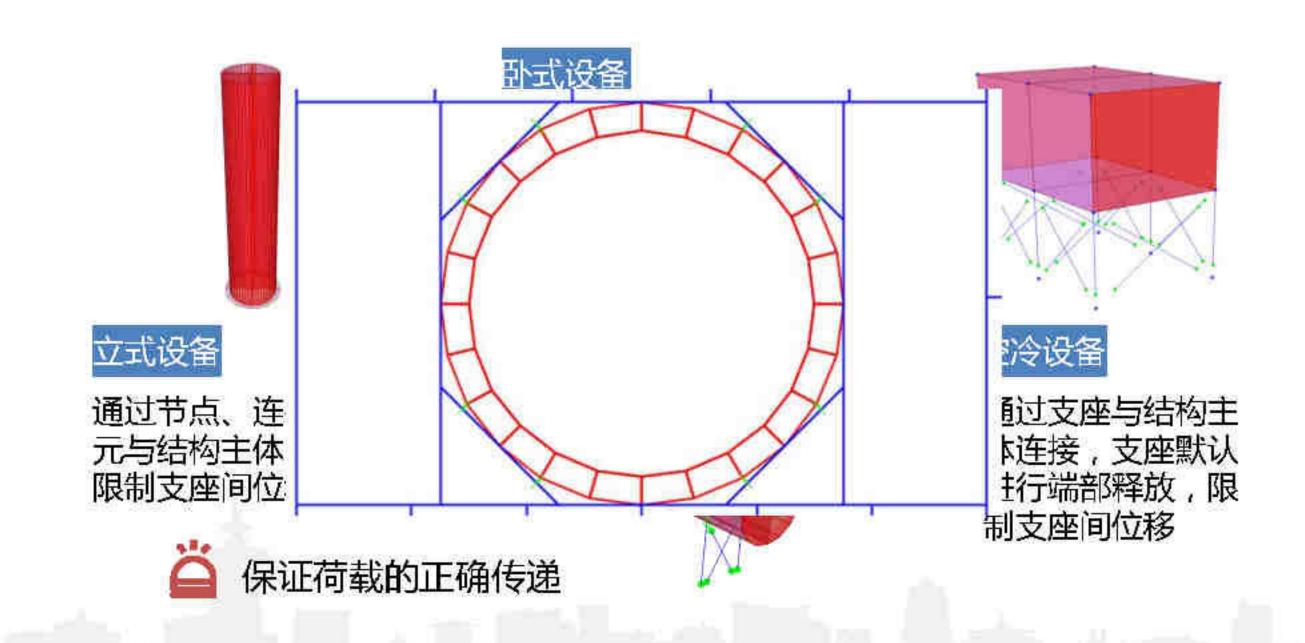
单元形状指导

节点位置的选择应满足下列几例条件。

- 在每一角点的各角度必要分子180°、当从各角度被近90°时。或至少在40°到115° 也图内。即边形可存到最佳结果。
- 一十年元的特征系数不改太大。对于三角形。这是最长边与最短边的证值。对于 取设形。这是对边中点连续的较长而离り致短距离的证值。对于转还系数为1。 自再到最佳结果。成至少十千4、转还系数不再程注19。
- 对于预边市。两个节点不必合院一面向。程序可以有虑在是无肉的少量相等。在 独立以线周的异理可能来要重相转程度。在第点技术连查子交子此点的再语。如 任意两个程点以线形交易小于10°、有每到最佳但事。此角度不得程过40°。

在完全知分同程內,这些事件一般能够得到真定。当他任意教验的和网络相当他允时。 厚据云式如情味度让课程云式的更为敏感。

推社 使用混合金素单元数分的角度


不同剖分尺寸的影响

0 2m 1.5m 1m 0.5m

OutputCase	StepType Text	Steplium Unitiess	Period Sec	teplium initiess	Period Sec	StepNum Unitless	Period Sec	teplium nitless	Period Sec	StepNum Unitless	Period Sec
MODAL	Mode	1	2.291509	, 4	1,85512	7	1.831961	1	1.788795	1	1.736162
MODAL	Mode	2	2 228914	2	1,803749	2	1,781811	2	1,740964	2	1.691099
MODAL	Mode	3	0.764863	3	0.784291	3	0.783944	3	0.763968	3	0.763938
MODAL	Mode	4	0.608034	5 4	0.601357	-4	0.601787	4	0.601531	4	0.600853
MODAL	Mode	5	0.458719	5	0.456774	5	0.456657	5	0.456644	5	0.456588
MODAL	Mode	6	0.456504	6	0.455323	6	0.455838	6	0.455744	6	0.453847
MODAL	Mode	7	0.426946	7	0.426948	7	0.426941	7	0.426941	7	0.426942
MODAL	Mode	8	0.421175	8	0.420292	8	0,419579	8	0.420048	õ	0.418343
MODAL	Mode	9	0.401563	9	0.406918	9	0.415257	9	0.401287	9	0.401284
MODAL	Mode	10	0.401013	3 10	0.402496	10	0.401276	10	0.386593	10	0.381768
MODAL	Mode	11	0,36343	3 11	0.401328	11	0.396647	11	0.380821	11	0.378629
MODAL	Mode	12	0.359153	12	0.369056	12	0.363387	12	0.384251	12	0.36315
MODAL	Mode	13	0.343485	13	0.366343	13	0.362394	13	0.359274	13	0.359154
MODAL	Mode	14	0.325323	14	0.359672	14	0.359636	14	0.35416	14	0.349712
Alegara:	250	123	\$3E200000)	5 623	25.00.20	923	5334430	923	1,5250	55	15524110

支座处理

荷载模拟

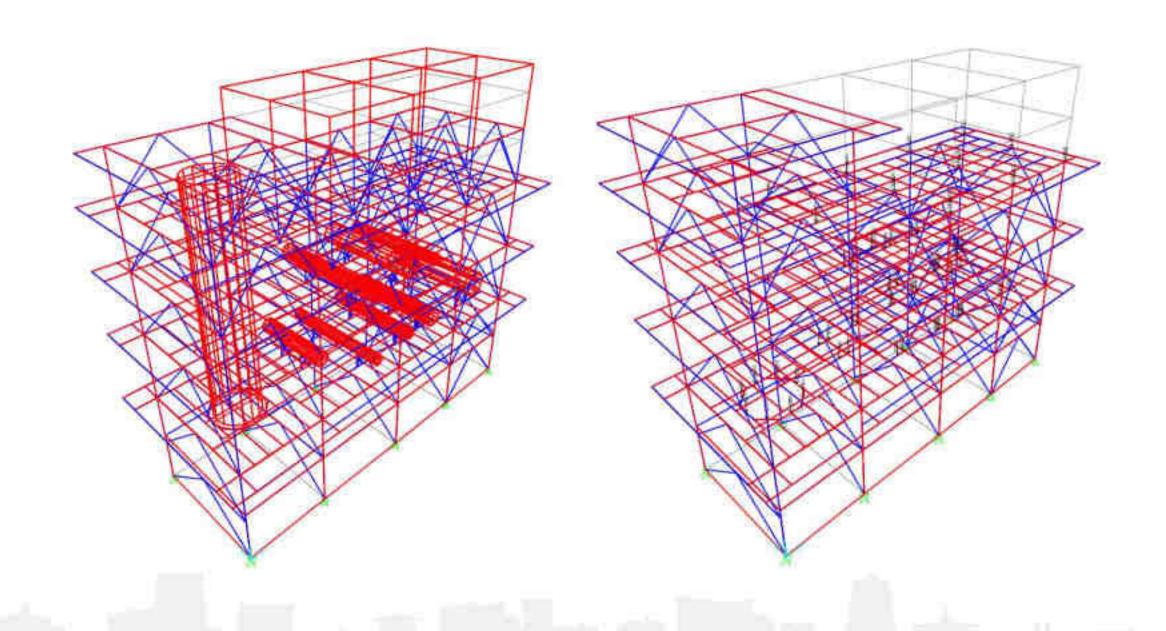
- 重力乘数

荷载计算

壁厚计算重量 $G_t = f(t)$

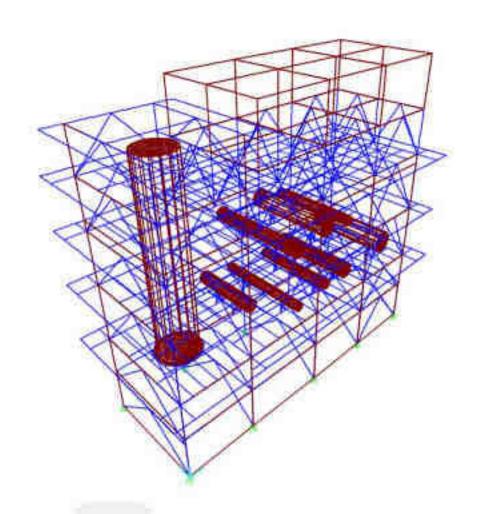
プトカガ 車車 車

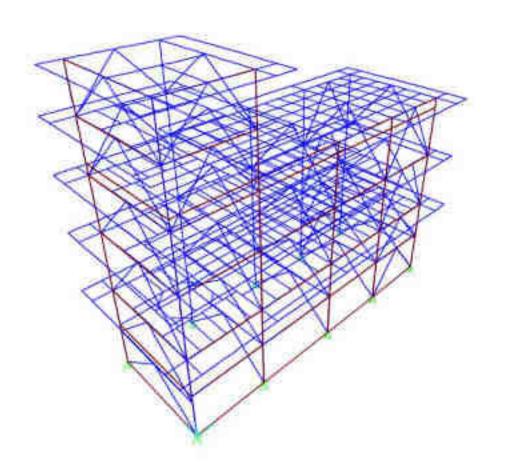
设备自由 $G=G_t+k_tG_t$ $k_t=(G-G_t)/G_t$ 死水水重 $L_{vv}=k_{vv}G_t$ $k_{vv}=L_{vv}/G_t$


tom - Kember

荷载模式		DEAD
重力荷载	V	Ŋ.
坐标系	k_t	GLOBAL
UZ	n-t	-1.937
荷载模式		MIDIAW
重力荷载		
坐标系	b	GLOBAL
UZ	n_m	-0.7901
荷载模式		WATERW
重力荷载		i i
坐标系	K _w	GLOBAL
UZ		-0.9876

記言达


设备整体建模


荷载模拟设备

设备整体建模

荷载模拟设备

设备整体建模

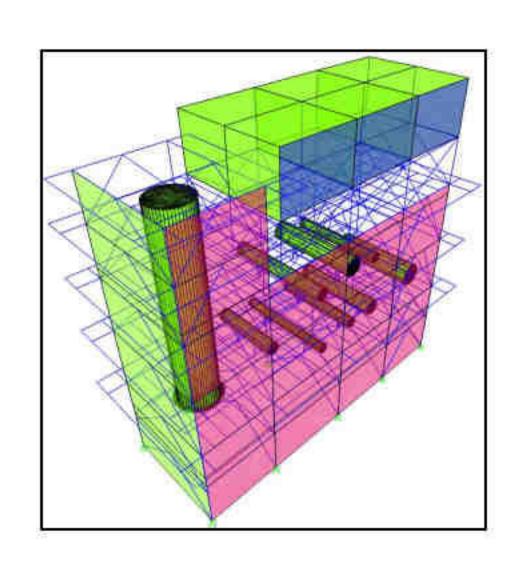
	OutputCase	StepType Text	StepNum Unitiess	Period Sec
.	MUUTAL	Mode	1	1.826751
	MODAL	Mode	2	1.795917
	MODAL	Mode	3	1.144613
	MODAL	Mode	4	0.644202
	MODAL	Mode	5	0.631353
	MODAL	Mode	6	0.610613
	MODAL	Mode	7	0.595705
	MODAL	Mode	8	0.572264
	MODAL	Mode	9	0.571449
	MODAL	Mode	10	0.55752
	MODAL	Mode	11	0.556746
	MODAL	Mode	12	0.556496
	MODAL	Mode	13	0,542488
	MODAL	Mode	14	0.529331
		248 =		

荷载模拟设备

	OutputCase	StepType Text	StepNum Unitless	Period Sec
•	MODAL	Mode	3	1.355688
	MODAL	Mode	2	0.827057
	MODAL	Mode	3	0.704441
	MODAL	Mode	4	0.657636
	MODAL	Mode	5	0.639516
	MODAL	Mode	6	0.614546
	MODAL	Mode	7	0.604963
	MODAL	Mode	8	0.573605
	MODAL	Mode	9	0.561807
	MODAL	Mode	10	0.560845
	MODAL	Mode	11	0.580258
	MODAL	Mode	12	0.530283
	MODAL	Mode	13	0.526527
	MODAL	Mode	14	0.526141
	0.5610	600.3	12	53-57-5

设备整体建模

Joint Text	MassSource	U1 N-s2/mm	U2 N-s2/mm	U3 N-s2/mm
~4949	MSSSRC1	0.049	0.049	0.049
~4950	MSSSRC1	0.051	0.051	0.051
~4951	MSSSRC1	0.076	0.076	0.076
~4952	MSSSRC1	0.049	0.049	0.049
~4953	MSSSRC1	0.051	0.051	0.05
+4954	MSSSRC1	0.076	0.076	0.076
~4955	MSSSRC1	0.049	0.049	0.049
~4956	MSSSRC1	0.051	0.051	0.05
~4957	MSSSRC1	0.076	0.076	0.076
~4958	MSSSRC1	0.049	0.049	0.049
SumAccelU	X MSSSRC1	522.693	0	(
SumAccelU'	Y MSSSRC1	0	522.693	- (
SumAccelU.	Z MSSSRC1	0	0	522.693


荷载模拟设备

Joint Text	MassSource	MassSource U1 N-s2/mm N		U3 N-s2/mm
~1183	MSSSRC1	0.049	0.049	0.049
~1184	MSSSRC1	0.052	0.052	0.052
~1185	MSSSRC1	0.077	0.077	0.077
-1186	MSSSRC1	0.049	0.049	0.049
-1187	MSSSRC1	0.052	0.052	0.052
~1188	MSSSRC1	0.077	0.077	0.077
~1189	MSSSRC1	0.049	0.049	0.049
~1190	MSSSRC1	0.052	0.052	0.052
-1191	MSSSRC1	0.077	0.077	0.077
~1192	MSSSRC1	0.049	0.049	0.049
SumAccelUX	MSSSRC1	518	0	0
SumAccelUY	MSSSRC1	0	518	0
SumAccelUZ	MSSSRC1	0	0	518

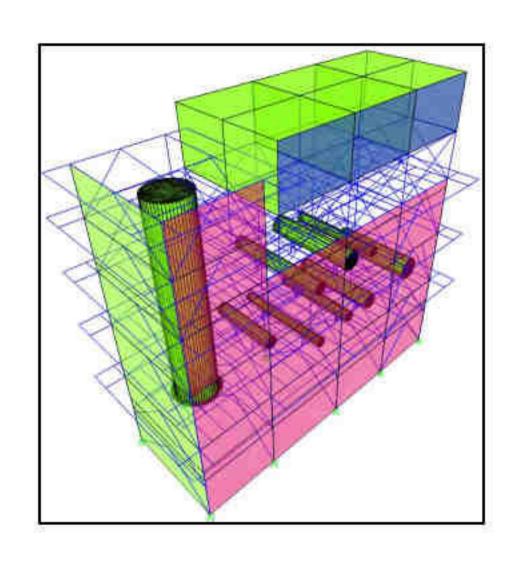
风荷载计算

计算过程:

- 1 计算各构件的挡风面积。
- 2 根据结构的宽度、榀数、榀间距、挡风系数等参数查表得到体型系数。
- 3生成模型时,在迎风面建立虚面,并指定计算得到的风压系数。
- 4 风荷载的其他系数在工程信息中指定,并定 义到风荷载工况。

风荷载计算

构件的遮挡


- 体型系数中体现

设备的遮挡

- 修改风荷载体型系数

7.4.5 计算设备风荷载时应考虑相邻设备的放大或遮挡影响。 并列布置立式圆形设备的风荷载整体体型系数的取值应符合下列 要求:

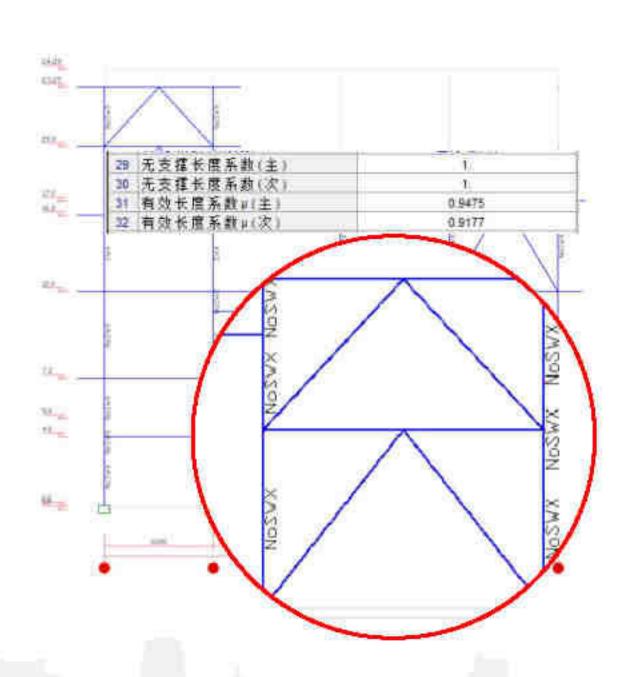
> 四種基的 20回题转型系数: 1.3 2回回题转型系数: 1.3

語 清 i 太

柱计算长度系数

柱计算长度系数

- 失稳模式自动判断
- 失稳模式调整
- 按规范公式计算长度系数

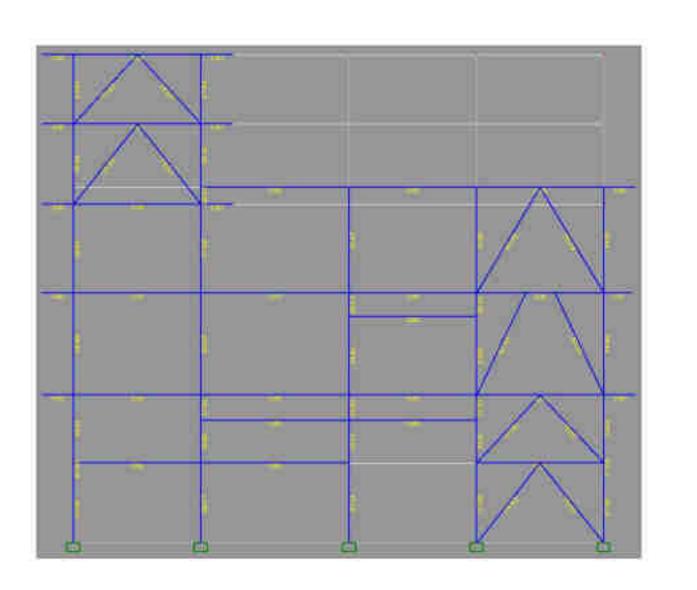

JGJ 99-2015 7.3.2

有侧移失稳

$$\mu = \sqrt{\frac{7.5K_1K_2 + 4(K_1 + K_2) + 1.6}{7.5K_1K_2 + K_1 + K_2}}$$

无侧移失稳

$$\mu = \sqrt{\frac{(1+0.41K_1)(1+0.41K_2)}{(1+0.82K_1)(1+0.82K_2)}}$$



記言达

Karl Carlos Carl

长细比计算

- 计算长度系数
- 无支撑长度系数
- 柱截面
- OpenSteel中显示结果

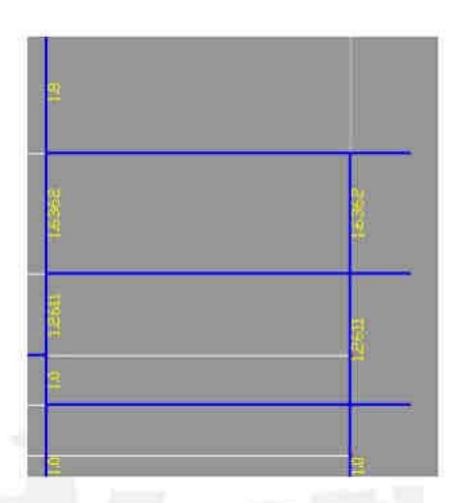
地震内力调整

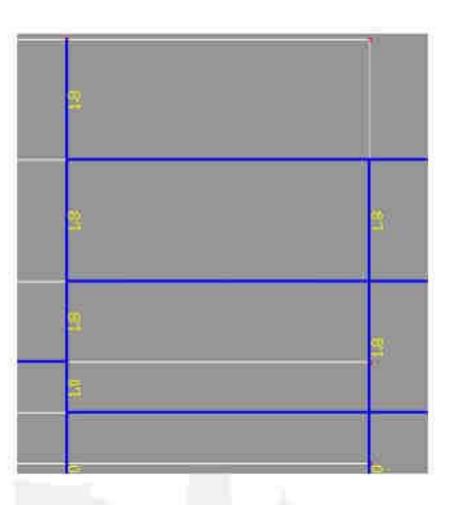
地震内力调整

地震剪力调整方法

- 榀调整
- 空间调整

3 钢框架-支撑结构的斜杆可按端部铰接杆计算; 其框架部 分按刚度分配计算得到的地震层剪力应乘以调整系数, 达到不小 于结构底部总地震剪力的 25%和框架部分计算最大层剪力 1.8 倍二者的较小值。


機謀	工况	VO	Vf	Vť.	AE, \	ve	
Story?	BQK	196, 461	9, 224	48, 961	5, 26	19	
Story6	EGX	195, 461	20, 49	48, 865	11. 38		
StaryS	ET VASSE	71.51000	The same of the same	也蓝工况下的指	行后的框架對力	200	() abstraction
	- 49	機属	工况	Vo	Vf	Vf.	A4, \A4
Story4	22 手曲	5470.534	mande	mm 600	Cletatra (The Atlanta	4 1000
5tory3	(Y=0,00m)	Story7	EQM	98,092	5, 144	24, 525	4,768
StoryI	22 平面 (Y=0, 00m)	Storyfi	EGH	96,092	10.608	24, 523	2, 269
Storyl	172 平面	EV s	GET		0.0	707.00	002
Story0	(¥=0,00m)	3/tory5	EQX	98.092	84, 27	84.2T	1.0
atago.	XZ 平面 (Y=0,00m)	Story4	ROX	98,092	60, 681	60,681	1.0
	IZ 平直 (Y=0,00m)	Story3	BQX	98,092	84.311	84,911	1.0
	22 平面 (Y=0,00m)	Story2	EQM	98, 092	100.918	100.918	1.0
	xx 平面 (y=0,00m)	5tory1	HOM	98,092	98,097	96.097	1.0
	立 平面 (7=0,00m)	Story0	EQX	98,092	98.097	98.097	1.0


地震内力调整

地震内力调整

榀调整

空间调整

设计方法

钢结构稳定设计方法

表 1 各量计方法设置要求

设计方法	初始几何缺陷	P-A	构件 装陷	P- 6	计算长 度乘数	稳定 系数 Φ	设计弯矩
一阶分析法	无	无	无	无	附录f	耐菜 D	分析夸矩
一阶放大法	名义荷载法	内力放大法	无	无	1.0	附录D	分析判矩
二阶分析法	名义荷载法	预设 P-Δ 选项成使用 非线性工况	无	无	1.0	姐录 b	分析均矩
直接分析法	名义荷载法	预设 P-Δ 选项或使用 非线性工程	假想等 效等矩	杆件细 分	无	1.0	分析弯矩+假 想等效弯矩

新钢标"直接分析法"在 ETABS 和 SAP2000 中的实现

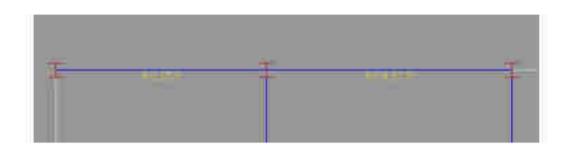
筑信达 吴文博

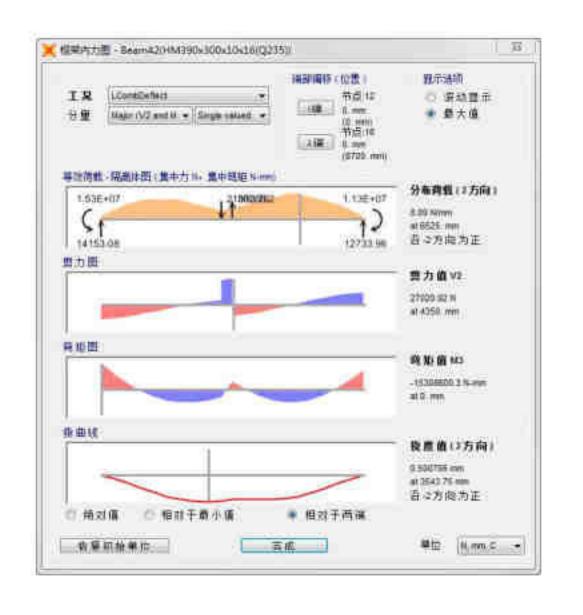
随着最新的《钢结构设计标准(G8 50017-2017)》实施。ETABS v17 和 SAP2000v20.2.0 也进行了相关的 更新。其中最主要的更新是实现了新钢标中稳定设计的照种方法。 用户可以在钢结构设计首选项中选择相应的设计方法。

设计方法

钢结构稳定设计方法

- 直接分析法
- 二阶分析法
- 一阶放大法
- 一阶分析法

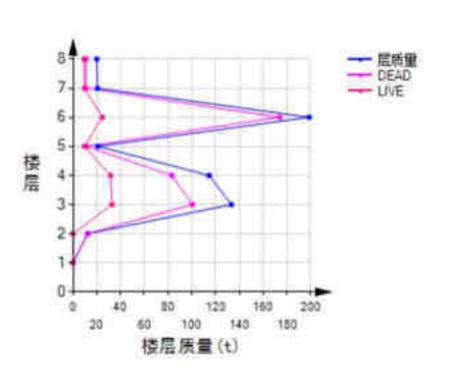



訊言达

挠度计算

挠度计算

- 提取SAP2000计算结果
- 在OpenSteel显示挠度


法言记

楼层质量

- 提取SAP2000计算结果
- 使用截面分割提取质量结果
- 生成表格和图表

表 4.2 质量分布

楼层	(1.0)DEAD(t)	(0.5)LIVE(t)	层质量(t)	质量比
Story7	10.969	9.18	20,689	0.978
Storyt	10.969	9, 569	20.538	0.103
Storyfi	174. 162	24.6	198.762	9.501
Story4	11, 35	9, 569	20.919	0.183
Story3	83.025	31,565	114.59	0.86
Story2	100, 526	32.76	133. 286	10.93
Story1	12.194	0.0	12, 194	121939404, 344
StoryO	0.0	0.0	0.0	0.0
总计:	403, 124	117, 243	520.367	7

楼层重力荷载代表值

- 根据质量源计算
- 使用截面切割命令

表 5.2 楼层重力荷载代表值

楼层	重力荷载代表值
Story7	200.891
Story6	406. 276
Story5	2393. 793
Story4	2602.98
Story3	3748.876
Story2	5081, 734
Storyl	5203.674
Story0	5203, 674

楼层剪力

- 提取SAP2000结果
- 定义截面切割得到楼层剪力

表 5.3-1 风荷载工况楼层剪力

楼层	工况	剪力 X	剪力Y
Story7	WINDX	-27.6	0.0
Story6	WINDX	-102.522	0.0
Story5	WINDX	-170, 429	0.0
Story4	WINDX	-204.103	0.0
Story3	WINDX	-288, 955	0.0
Story2	WINDX	-371, 332	0.0
Story1	WINDX	-397.365	0.0
Story0	WINDX	-397.365	0.0

层间位移

- 提取节点位移
- 广义位移

序号	标高(m)	工况	X 向柱顶位移(nn)	Y 向柱顶位移(nm)	
1	23. 25	WINDX	12.088	0.024	
2	23. 25	WINDY	0.51	3.695	

楼层	标高(m)	工况	X 向层间位移(mm)	Y 向层间位移(mm) 0.013	
Story7	23. 25	WINDX	0.269		
Story6	20.0	WINDX	0.689	0.003	
Story5	17.0	WINDX	0.195	0.006	
Story4	16.2	WINDX	2.497	0.008	
Story3	12.0	WINDX	9.338	0.144	
Story2	7.2	WINDX	7.008	0.016	
Story1	4.0	WINDX	1.471	0.026	
Story0	0.2	WINDX	0.0	0.0	

节点抗震承载力计算

- 抗规 8.2.5
- 计算书输出计算结果

1 节点左右梁端和上下柱端的全塑性承载力

等截面梁

$$\sum W_{pe}(f_{ye} - N/A_e) \geqslant \eta \sum W_{ph} f_{yh}$$
 (8. 2. 5-1)

2 节点域的屈服承载力应符合下列要求:

$$\psi(M_{\text{pbl}} + M_{\text{pb2}})/V_{\text{p}} \le (4/3)f_{\text{yv}}$$
 (8. 2. 5-3)

3 工字形截面柱和箱形截面柱的节点域应按下列公式验算:

$$t_{\rm w} \ge (h_{\rm b} + h_{\rm r})/90$$
 (8. 2. 5-7)
 $(M_{\rm bl} + M_{\rm b2})/V_{\rm p} \le (4/3) f_{\rm v}/\gamma_{\rm RE}$ (8. 2. 5-8)

7.1 节点 X1-Y1-h3.400

下柱: Column1 (HW400x400x13x21) 上柱: Column1#2 (HW400x400x13x21) 梁1: Beam321 (HM244x175x7x11) 梁2: 无

验算《建筑抗震设计规范》GB50011-2010 (8.2.5-1) 荷载组合:LoadComb18 轴力 N = 541948.06 N 节点有支撑,不需要验算GB-50011-2010 (8.2.5-1)

验算《建筑抗震设计规范》GB50011-2010 (8.2.5-3) Φ (Mpb1+Mpb2)/%p = 0.70 (125671420.00+0.00)/1147991.00 = 76.63 (4/3)Fyv = (4/3)130.50 = 174.00 満足GB-50011-2010 (8.2.5-3)

验算《建筑抗震设计规范》GB50011-2010 (8.2.5-7) tw =13.00 > (hc + hb) / 90 = (358.00+222.00)/90 = 6.44 满足GB-50011-2010 (8.2.5-7)

验算《建筑抗震设计规范》GB50011-2010 (8.2.5-8) 荷载组合:LoadComb22 弯矩 Mb1 = 1683944.72 Nmm Mb2 = 1683944.72 Nmm (Mb1+Mb2)/Vp = (1683944.72+0.00)/1147991.00 = 1.47 (4/3)Fyv/ Vre = (4/3)130.56/0.75 = 232.00 満足GB-50011-2010 (8.2.5-8)

記言达

节点抗震承载力计算

- 进行验算的柱截面

工字形截面柱

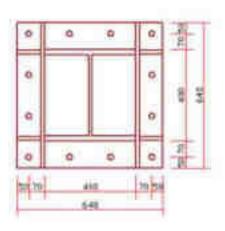
$$V_{\mathrm{p}} = h_{\mathrm{bl}} h_{\mathrm{cl}} t_{\mathrm{w}}$$

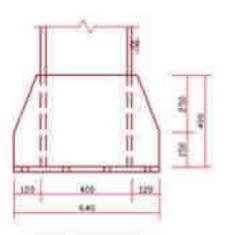
(8.2.5-4)

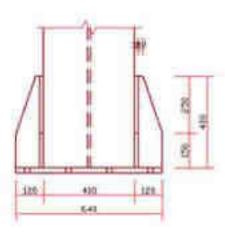
箱形截面柱

$$V_{\mathrm{p}}=1.8h_{\mathrm{bl}}h_{\mathrm{cl}}t_{\mathrm{w}}$$

(8.2.5-5)


圆管截面柱


$$V_{\mathrm{p}}=(\pi/2)h_{\mathrm{bl}}h_{\mathrm{cl}}t_{\mathrm{w}}$$


(8.2.5-6)

柱脚计算

- 柱脚类型
- 计算结果

柱脚材料统计表

柱脚名称 (数里)	部件	規格	数里 -	重量 (kg)		dr v2
				一件	小计	备注
SUPT-1 (10)	底板	640x640x25	1	79.87	79.87	
	靴板	640x400x16	2	31.95	63.90	
	加劲板	104x400x16	4	5.19	20.77	
	螺栓	M24x800	4	3.02	12.09	
	SUPT-1 重量: 176.63x10 = 1766.28 kg					
17		总计重复	2 : 1766.	28 kg		

1. 推麻内力

透粉磨子和的一般性力

A KRMHAH

工或是基準度的确定

日本は東京教師・19 Q Colone 計画で 19(17) 単語 1 mai 1 mai

· MEUE

被共享政治工作。新由外的第25

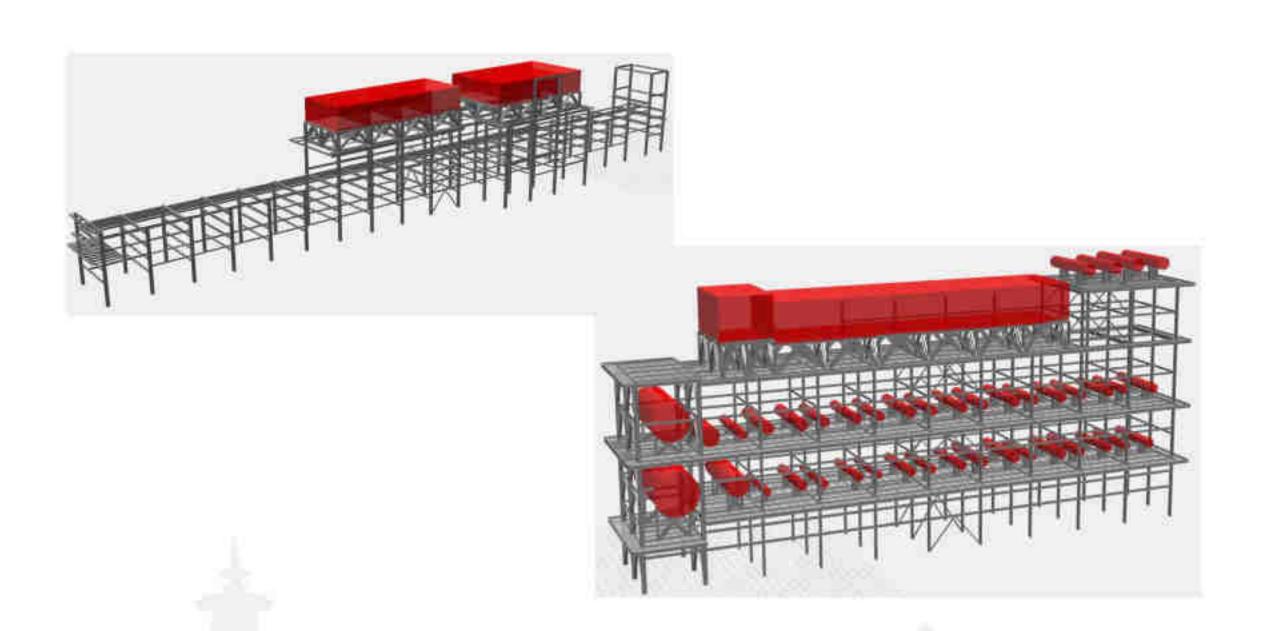
41 - V+2172 - V21312 + 1141.52 - Trible-12561-2

5. 税税用银币基

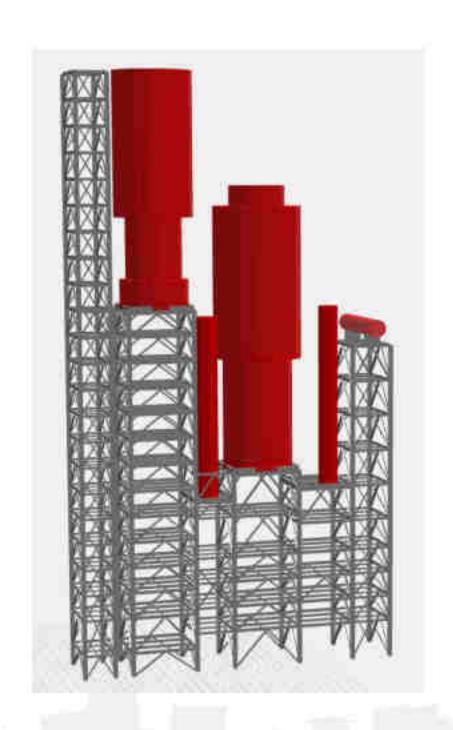
毛面质化图

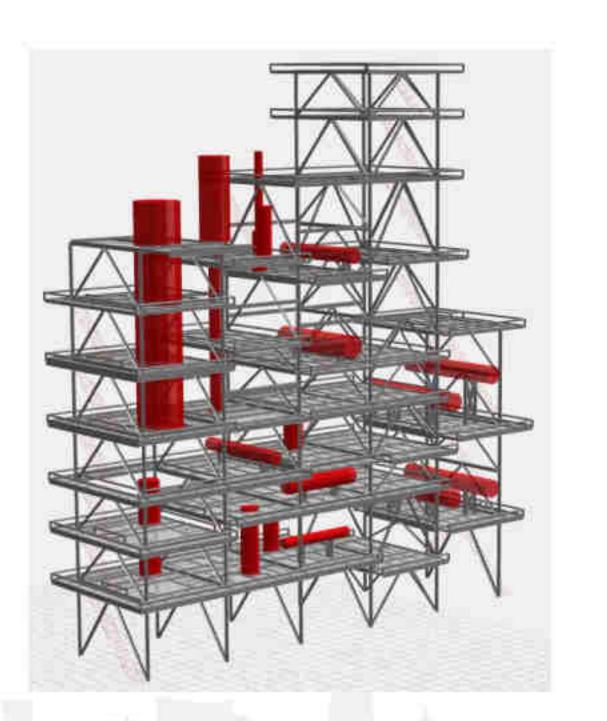
製稿手数: 4 × 5.4 (最大配置手数5.4±× 5.4) (2000年. 07 × 36.700. 070 ↑ > 1500年.74, 平表記書 ▼ -

T. 基础用能压力

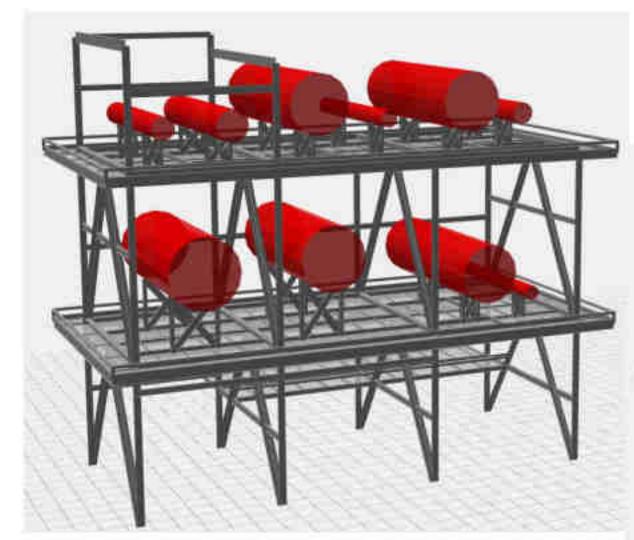

* 1 - 10 - 10 - 10 - 1 - 11 - 11 - 10 - 1

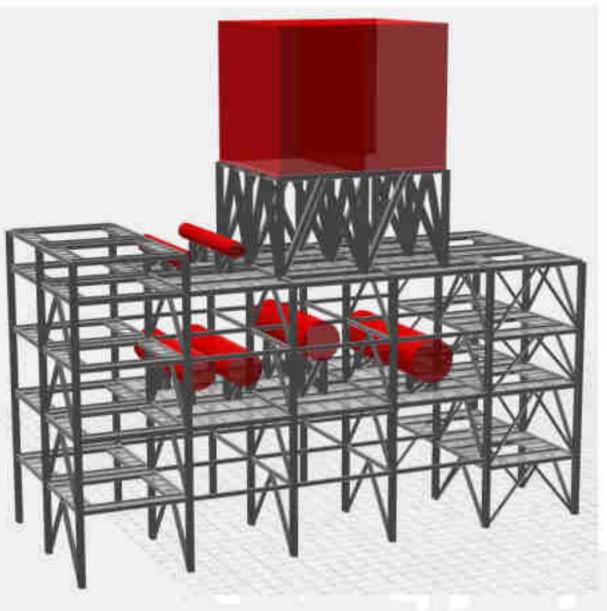
A. 社画原用系统力程率


社会を (1990年1996年1997年1997年 - 1990年1997年1997年 - 1970年 | 1970年



工程案例




工程案例

工程案例

SAP2000产品联系人

产品经理: 王博 15910608694 wangb@hsw.com.cn

谢谢!